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ADVAYCE AN & ZPORT

A COHFARATIVE STUDY OF THS ZFFECT OF WING FLUTTER SHAPE

g

O TEZF CRITICAL FLUTTER SPZED

3y I. Irving Pinkel
SUMMARY

L coumparison is wmade of the results of calculations
of the critical flutter speeds c¢f nine uniform rectangular
wings without ailerons oy two unethode, as focllows:

le The metheod in whi
ntroduced indirectly by choosine

ch the effect of the wing flutter
i 2
naranetars

)
ean values for

2. A method that introduces an additional desree of
freedonm in the w1ng—bend1ng flutter node

Tlese exaiuiples show that, for the case of nernal
winge anid even for wings of higher aspect ratio, the dif-
ference ir the values obtained with these two methods is
inconseguential and the effect of iancluding a second de—
gree of freedom in the bending wmode is usuzlly small.

IETRODUCTION

m~ -

The effect of the shane of a fluttering airfoeil
ntrocuced into the equations of motion and a comparisaon

s wade of the predicted critical flutter speeds chtained
7 The several methods that have poen devaloped for solv—
ng the flutter proviews.

2]

He @ e -t

ied to the fluttver provlen,

Iagrange's eguaticns, appli

provide o means of solving for the critical flutter speed
and freguency and, in principle, for the wing flutter shape.
In the mpresent paper, flutter speeds predicted by the use

of this method for uniferm wings of rectangular plan form
are coupared with the resgulte obtained by the standard two-—
dimensional method (referorce 1) in which the effect of

wing flutter shape is only indirectly introcduced. ZBoth



valuere are compared wi‘ﬁ.ﬁﬂ.ﬁi‘,rspeeds obtained from
expariments made in the 8-foot high—spced tunnel at LMAL.
This comparison is used to judge the importance of intro-—
ducing consideretions of wing flutter shape into the
fluttar prodblem.

A solution of the flutter problem wss given by
Th~odorsen (raference 2) snd its application and implica—
tions were amplificd by Theodorsen and Garrick in a sub-—
saquent paper (reference 2), The formal solution of th=
flutter problem was cerried out on a2 uniform infinite wing
sbout which the zir flow is two—dimensional. The struc-
tural stiffness of the wing in bending and torsion is
represented by cquivalent springs. The pileron is assuned
to axtend the entire length of the wing =nd is supported
at its hinge by & spring represanting the elastic proper-—
tiss of thr aileron—centrol system, The wing hes three
distinct types of vivratory motion: Dbending motion par-
pandicular to th~ plen~ of the wing, torsion motion =bout
th~ static torsion axis, and aileron motie¢n adbout the
ailrron hinger., Flutter is = susteined oscillation involv-
ing two or more couplrd vitration modes. Four types of
flutter are thus recognized: (1) bending-torsion;

(2) bending-ailerron; (3) torsion—sileron; and (4) bending—
torsion—sileron. The primary param~oters determining the
critical flutter spnad are found to be: the wing chord,
the mess of th» wing per unit spen length, the chordwise
position of thr static torsion sxis and center of gravity,
tha momont ¢f inertia of the wing aTout the static torsion
axis, the 2ir density, the torsion and bonding stiffness,
th~ aileron crnter—of—gravity position with respect to the
aileron hinge, the aileron hinge position on the wing chord,
the aileron wass por unit length, and the stiffness of the
sileron—countrcl system, The wass and stiffness para.acters
ar~> combined in the cguaticns of motion of the wing to give
nondinensional conrfficirnts that Aerfine the bending, tor-
sion, ~ud aileron natural vibration frequencies.

APPLICATION OF THE TW#0-DIHZINSICHLL FLUTTZR THEORY
TO PIFITE WINGS
When the two—-dinensionsl flutter thecry is spplied to
a wing that is a finits eontinuocus structure with scection

peraucters varisble alcng the span, scveral questions ern
raiged:
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1., Wnat are the air forces assignable to a wing
vidbrating with amplitude variable along thne
span? ’

2. Which scction parametcrs of the wing are to be
used in solving for the critical flutter
spredl -

3. What values are to b~ given to the freaouency
terms occurring in the thoory?

The pr-sent practice in applying the two=dimernsional
flutter theory is to pick a position along the wing span
that is considered .reprasentative of ths asveroge 'proper-
tisns of the wing with regard to section paramatoers and
wing flutter motion. The threa—guarter somispan se2ction
is normally considered to be this chegractoristic wing:
sretion. The lowest natural vibration freguencies in
wing ‘bending, torsion, and sileron oscilletion are
rssignerd, The solution for the critical flutter speed
is then assumed to be that of a uniform infinite wing
having the drseridbed properties, The air ferces usad are
thosa obtsined by a two—diuecnsional wing treatment. Good
jJudzmant in selecting the representstive wing secction
gives calculated critical flutter spesds that come close
ts exprrimentel veluns,

Whan ons or both of the coupled modes of vibration
naking up the flutter vary in magnitude zlong the span or
do not involve the antire wing, the effect of thr wing
shap~ in flutt-r is introduced into the problen by apply-
ing weighting factors to the coupling terms present in
the ~guation of motion of the fluttering wing, For two—
dimensional-flutter cascs of an infinite wing involving
the aileron, the weighting factor to be apnlied to the
ailesron—-tending and aileron—-torsion coupling terms would
be the ratic of aileron span to wing span. For an actual
wing in the cas~ of bending—-tersicn flutter, the woighting
Tactor £ would depend on the wing bending and wing t or—
sion shapes in the flutter vibration,

If the displacenssnt of 2ny point of th= wing duc to
the bending mode of vibration is given by h(x)ei(wt+@1)
and the displocemsnt due to torsional vibration 1s written
es  q(x)eliwt+iy)

where

X span coordinstas measured frow wing root



h(x) amplitude of bending vibration at x

a(x) amplitude of torsionsl vidration at =x
W flutter fregquency
t tinme

®;,¥; DPhase angles of the resprctive vidrations

Then, for the cnse of a rectangular wing with section
parauncters constant anlong the span, the confficirnt of

]
coupling is obtaincd by tho integral ¢ =jr h(x) a(x) ax
)

whara 1 is tho wing senmiespan length,
THE USE OF LAGRANGEZ 'S LQUATIONS IN THEe FLUTTER PROBLEM

The application of Lagrange's eguations and general-
ized coordinates to the flutter problem provides a means
cf treating the wing as a continuous structure capable of
vibrating in its various modes with amplitude variable
nlong the span, The characteristic determinant developed
in the ccurse of the solution of a flvtter problem yilelds
upon the soiluticn of the equations derived therefrowm an
estinate of the shape assuked by the fluttering wing as
well as the critical flutter speed and vibration frequency.
Cne weakness of this method at present is the practical
necessity for assigning to each wing section the air forces
that would exist on & two-Cdimensional wing vidbrating in a
manner identical with the sectiocne. This assumption leaves
out the effect of aspect ratio. For the higher reduced
flutter frequencies the error introduced by neglecting the
effect of aspect ratio is not large.

In applying Lagrange's equations it is considered that
the function which gives the flutter vibration shape along
the span for a given case can be made up of a sum of ele-—
mental span functions, each multiplied by a factor. These
nultiplying factors are taken as the generalized coordi-
nates of the problem and their evalustion gilves the func—
tion expressing the variation of vibration amplitude alcong
the wing span for each vidbration mode. If H{x) is the
amplitude syan function of the bending vibration and &(x)
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the corraesponding function for the torsion vidbration,
then ' R :

o : o ifwtve,)
H(x) = ane #n hn(x')
znd
) ‘ { (b4
a(x) = Zoget UHR)g (x)
whare
ins Pp - generalized coordihatns

n,(x),a,(x) elewental asplitude functions for bending
and torsion vibrations C

Pn, Yy phase angles of bending and torsion vidration
nodes

If the wing bending shape in flutter 1s assunnrd to
be soune coubination of the wing shapcs in tho first and
socond natural vibration modes of the wing, the use of
two elen~ntsl functionse h,(x) and hg(x), roprosenting
the first and e~cond netural vidbration bending modes, is

sufificicent for the scriecs exprossing the flutter bonding

shapa H(x). Because the lowest natursl torsion fre—
curncy of :the wing is so. meny tices higher thnan the bend—
ing frequency, th~ first naturesl torsion mode of the wing
is ~ssun~d to br & good approximation to T(x), ths tor—
sion flutter shene, Tha Dberding and torsion flutter an-
plitude functions fuployed are

i(wt+e,

. i(wt+e
}-i(x) = qq .2)‘

>hl(x) + qgo ho(x)

Gi(wt*-\bl)al(x)

E(X) = Pl
For the case of & rectengulsr wing with constant
section paraurters, the various bandirng =nd torsion nat-
ural vibretion modes sre well known ond csn be apoproximated
ty siuple polynonials in x, There is then for h,(x),
hy(x), and al(x)
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ho(x) = (1.6276 %° — 4.1621 ¥2 + B.3484 ¥* - 0.9231 x%)N,

a,(x) = (2 X - X°) ¥,
where x = %, ! Dbeing the wing scaispan lepgth, and N

with subgeripts ropresents normallizing factors so chosen
* hng ‘ 2 -
that &/ ~:;(x)dx = 1 - ap (x)dx, Th~ valueg of ¥
(o) b o) -

thus d~trruinsd arn

Hy = 19.3b
N, = 1.37

3

whars b 1is the wing seumichord length., Th= shapes of
thes» functions are illustretnd in figur~ 1.

For the bending~torsion flutter ecase~ for the unifora
regtanguler wing, the applicstion of Lagrange's eguations
glves for the generslized equations of motion:

L 5 1 GJ ' da, (x)\?
!“aay a1 (x)dx + =~ e :
v Kw? Hr=,

- - »
App ‘ ;
+ —Ej/ h, (x) a;(x)dx! g1 + ===/ hy(x) a;(x)dx | gy = 0

o
) ~=




- |2 -
. r :
;Acaj h;(x)al(x)_dX‘ P
[ % fo) -
) hay v AL = < -
~ . B 2 1 [ 0%n, (x)
’:2 L b Kw® Hb.J Ax=c /J 4
Toni 1Iah()ah()
;“"c 3 E " X X
+ == n,(x)ho(x)dx+ —Z——— ’ = 0
,_bJ ! 2 Kw2 M ;/ Ox2 dx2 qu
0 ‘0 ,
- R :
?Aca/ hg(x)aﬁx)dxipl
[, :_,—o -
- b Lo -
51 3%n,(x) 3%h5(x) |
21728 h () ma(e) ax o+ 2 2L] 2R sealls
Ty 2 ww? Ao  ow2 5% 2 *1 11
0 : 0
- 1 1 2
A h.’" . 1 21 7 /égh (X A
it na®(x) dx + === o | ——Ee— ), x| qz = O
SN T kw® Mb \ dx2  / J

The syuzbols used ore consistent with those employed
in refarences 1 =nd 2. ¥or reference, the terug ?rﬁ
listed =as

M wing mass per uanit l-ngth
b wing semichord
BI wing bending stiffness; product of TYoung's modulus

and poment of inertisa of wing cross s=cticn
GJ wing torsion stiffnrss
faqs “gpe otc. complex terns d~fin~d in referances 1 znd 2

Performing the integrations indicated for the terus
containing wing structural stiffness terms yislds:



where

whl

U.)he

1'7

and

2 2

BI [ /3%h, (x)N :

—= /~——37~l Lodx o= owp,© Uk
"o, \ cx & / 1

J

- 1 L=, ( N

21 S 82220 % ay = wy ? 1o
Mo J N ©x®  / 2

integrals yicld

l
Jf hy(x) w,(x) ¢x = .85 @b
0
l
r‘ .
| ho(x) wy,ix) éx = 0.172 iV
Yo
L \ 2 z AQn 2
i d%h(x) 0®nz.(x) .-  B5.498 v
i - ~2L Ay = Sl
Jq o= cx* l

first natursl wing b~nding frrqueacy

srcon® natursl wing berding freguency

first natursl wing torsioeon frequency

critical flutter spoed
critical flutter freguency
wb

recue~d flutter fregusncy = <~

redius of gyration of wing mass about stintic torsion
exis

air density
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. The genernslized eqguations of mction beeoue, after
gson~ readuction,

(C.172 &_)py + (=0.186 &op+ 0.4265X)ay +[hey + sz>q2 =0

he eritical values o2f X =and k ara obtsained by the
simultsnerous solution of ths roal »ad insginasry equations

in X and k resulting frow the expansion of ths chnrac—
teristic dotsrninant formed Irom the cosfficients of the
gencralized coorcdinates of this s~t of equations. The
flutter speed is thoen obteined from the definitions of these
terins

X
flutter frequency w is

With v and k known, the
¥ ? 1ing k.

[al
obtained from ths exprossion defi

When the values of the verious criticsl flutter con-
stante are suvstituted in the eguations of wmotion, the
gonerslized coordinntes ars evaluated and the spproximation
to the wing flutter shone 1s obtained, '
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COMPARATIVE CALCULATIONS OF CRITICAL FLUTTER SPEEDS

Critical flutter speeds have beon determined for nine
rectangular wings in the NACA 8-foot high—-speed wind tun—
nel at LMAL, For each of these wings six theoretical crit-
ical speed determirnations were made:

1, Lagrange's eguation method for one bending and
one torsior mode

2. Lagrange's eyuantion method for two bending and

l
one torsion mode, with /; , (x x) ho(x) dx = =0.125 1 = ¢
34 Lagrange's equation meothod for two bending and one

v
¢
torsion med with / h,{(x) ho(x) dx ardbitrarily set
i

e 4 {
equal to zmero (€ = o), Tre coefficiont —0,126 comes
!

from the ) dx which would be zmero if

te (x
hy(x) and hg(") were a pair of strictly orthogonal
functions,

4, Lagrange's equation method when one torsion made
and two bending modes are used; the second mode is a tip
deflection made up of thnt portiocn of hz(x) Yeyond the
nodé ocenrring abvout C,7l along the semispan, These conm—
putations are givesn for plastic wings, which showed 2 tip-
doflection tendency in the wind—tunnel tests.

5+ Theodorsen's method when the firgt anaturel Tendin
frequency is used

T

fe Theodorsen's umethod whern the second natural bend-
ing frequenecy is used

.nc

The justification for making caiculations with ¢
equal to zero (groupy 5) is based on the argument that the
siall change in the shaps of the sccond bending mode nec—
essary to ma t orthogonal with the first bending mode

ra

is so susll the other coupling terms involving vhe
second bend
computatio
ling termns
i

p’lued. cri

ting mode are not changed appreciadbly. Previous
ns have gshown that smnll changes in these coup—
do not produce an appreciadble effect on the con—
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Theodorsen's method using the second boending frequency
were made to show that the experimental critical flutter
spead usually lies between the computed values obtained
with the first and sccond wing—bending frequencies. This
point ig discussed in detaill in reference 2.

he valnes of the wing parameters wused in these

mputations are given in table I, The results of these
tiong, as well as tho experimental critical flutter

eeds for the corresponding wings, arce given in table Iz,

cm a compnrison of the values obtained for thn
;

lutter spseds computed by The 0“soq method
and Lasrange's eguation mathod, it 1pnnar Lt coqs11era~
tions i lving lutt shape in the

ccnputatiosn o tieel flutte: reds may not be ncce
gary fferences in
the amount of work i

troduccds

4

i

. "
stent ¢

Wings E to 14A were of large asvect ratio and there—
fore ware introducing adiitional bending modes
into the fluttering wing. JFor these wings
Taerange! method yislds results that do not rep—
roesant o tical

inprovement in tuo predicted criti

A d. . P . - 2 o - o~ T
flutter spscds ns compared with the valacs obtalned vy
s = -

Fheoaureser

.

¢ L& to 18, plastic materizl
congiyuc ore Llile actu valuas of the
critical iflutter specds 0B agrange's eguntion
metlhod using btwo bvenliing n ral, come further

rimentai valu codorsen's., For

@RC s, the second Te troducaed into the

prohlom oopears to ¢ calculated crit—
ica 1 r spuel. s are wenk in bend-
ing T tip, ending mode as a
tin deflceection ten s egmuation values
e 1little eleser 1o tter spseds. The
bip—deild fun ing ths expression
g ( tn Yho position of
the the span Irom the
T oo oxpka“1 i vhot in limiting
Lagronse method to & sanll number of elemental
shnmag, : 1 aapongs on tuno proper cholice of theso

o -
TUNCULONG o

one hending and one torsion mode arc msed in
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Lagrange's cquation method, the results are, in general,
less accurate than when & s seond bending mode 1s intro-

1
duced. Arbitrarily setting F hy(x) hy(x)dx equal to

20T roaucns the nccuracy_of thc reosults.

The application o¢f Lagrange's equations to the flut-—
ter problen descrived in this report is similar to that
developed in reference 3 by S, J. Loring In carrying
cut thoe computations descrited in this section of tlhe
roport the values substituted for the freoquency terneg in
some of tThe flutter Culbu“mulJ“S were obhbinined frca wing-—
vibration measwrenments which gave counled fraguencins
that mny differ frou tnc trues mode Ireguency by as nuch
as 10 poercent. In this resvect tho conpulations with
Lagronge's eguations made in this report cirfer somewhat

- y

fron method sutlined by Loring in wiich uncoupled val—
ues of the wing freguencies arc cciffied, Ia cumﬂ”rls:n
with the errors intrciuced by unceritsintics ragsrdiang the
location of the stetic torsion axis rnd particulariy by
eg-act’*g vibration éamping, the ervor iz coupaufd crit—
ical flutter snecd resuliing from the use of coupled
vibraticn frecuveunclies is not Llargs.
SOUCLYSICYS
Te Tinited Ty pnrnc noiderations to the
uwze of Uu ending-moda funrce agrange 's equation method
Sives oredictoed criticnl £ s that arc close 0
the valucs obtainad Ly app Thooderson's flut—
ter theory. Thoro is no L on fresa the valiuns 2bh—
tained by clther wethod in v tunat one nmethod
will consisgtently give pre ttor speoonds clogser %o
the cxeerimentnl wvaluss th sther.
2w oroan ratic, the introductionm
f a sccond do cls egquation syste
appesrs aff Y eritical flutter
speeds <D Judgmont e used in seslecting
the elcomentn 0 represerting the sccond tending
flutter mode if an opprecinds iz %0 bHe made on
3 : ¢itr o scecond bend—

the calculated critical flu
ing mede introduced int
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TARIE I.- WING PARAMETEZRS USED IN FLUTTER COMPUTATIONS

W (VLo “ _ 2
Wing Wa Ty hy 0 K a Xg, T,
(cpm) Wy Wey, (£t)

2 1085 0.0604 0,425 0.500 ' 1/90  -0.400 ©C.25  0.3125

& 1150 .120 570 L5012 0,1170 -.1762 .08 272
10 1470 L065%  L\u25 5025 .01138  -.L400 .25 .300
11 1790 L0659 o5 K00 .01052  ~.,400 254 . 3045
12 1925 L0675 411 502 00972 -.251 .08 .2hg

13 23R”0 L0642 400,500 .00673  =.ROO 2316 .2885
144 . 2155 0659 L399 L5013 .00772  -.308 234 .2897
16 74 1192 .833 K00 L0745 ~n}50 .098 . 360
168 795 132 .906 500 .0743 -.450 .098 .360
17 1600 247 1,50 500 .03k%9 -.104 052 .345
18 1650 252 1,012 507 L0796 -~ 450 .098 360
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